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Considered is the problem of the motion of a rigid body containing a cylin-
drical (plane motion) or & spherical cavity filled with a viscous fluid. In
the case of small osclllations of the body with the cylindrical cavlty, the
solution is obtained by the operational method. For the general case, a
method is proposed which 1s applicable for a very viscous fluid when the
integro=-differential equations of motion are reduced to the ordinary equa-
tions with a small parameter at the higher derivative. The results are appli-
cable in the theory of rotatlion of a body about a fixed point.

1. The investligation of particular cases of motlion of bodles containing
cavities with viscous fluids 1is presented in [1 and 2] and elsewhere, often
as an example of operational methods. In [3] the oscillations of a body
were consldered under the conditlon that the Reynolds number is large, and
the investigation of fluid motion utilized an approximatlion of the boundary
layer. In the followlng 1s considered the problem of body motion containing
a viscous fluld with such cavities for which the solution of a gertain non-
stationary hydrodynamical problem is known.

First is considered the simplest case of the plane
problem. Let there be glven a rigid body containing a
cavity in the form of a circular cylinder the axis of
which coincides with the rotation axis of the body
(Fig.1). The case when the rotation axis does not coin-
cide with the central axis does not essentially compli~
‘ cate the problem. Let it be required to solve the prob-
lem of small osclllations for such a body 1n the presence
of a restoring moment proportional to the deviation.
Considered will be only the case of zero initial velocity
of the fluild. In the general case of an arbitrary ini-
tial distribution of velocities, it is necessary only to
find the superposition of the following solution and the
Fig. 1 solution of the problem of body motion in the absence of
external forces and an arbitrary initial distribution of
fluild velocitles in view of the linearity of the considered problem [2],

For the following, it 1is necessary to know the solution of a problem of
viscous fluld motion in a cylinder when the cylinder, initially at rest, is
instantly brought to a constant angular velocity o . This solution will be
obtained in accordance with [2]. The fluild particle trajectories may be con-
sidered circular. It then follows that v, =0 and v, 0@ = 0,where v,
and U, are the fluid particle velocity components along the radius and the
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perpendicular to the radius, ¢ 18 the central angle. The Navier-Stokes
equatlion 1s then of the form

0_“2_.("’% L %% %)
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The solution is sought for the initial and boundary conditions

v, = 0, for ¢ =0, v,=0a for r=a

Application of the Laplace transform method leads to the following expres-
slon for the fluld velocity
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Here v 1s the kinematical coefficient of viscosity, & 1s the cylinder
radius, A, are the roots of the Bessel functlion of the first kind.

Utilizing the expression for the veloclty of deformation in polar coordi-
nates, 1t can be established that the force of viscosity for circular motion
of the fluid 1s given by Formula
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where pu 1s the dynamical coefficlent of viscosity.

The expression for the moment of fluid forces acting on the cylinder walls
is obtained from the last two formulas in the following form

o0 A, 2
L, = Lo=4npa?w Z exp (— Va_kz' tl) (1.1)
k=1

Let J be the body moment of inertia, Ne the moment of the rotating
force; then the equation of motion for the body is

d2p

J P 4+ Mep =N
q Vo ;‘ ‘1
\ Here ¥ 1s the moment due to the fluid
acting on the body. The expression for it
ol N is easily found by means of the Duhamel
: Integral if the solution is known for the
corresponding hydrodynamical problem (1.1)
and the angular velocity w(t,) 1s given,
a4 \\ Thus, !
1
\ ,
= —Sc) (WL (a, t; — T) dr
s 0
/) 0.05 al /252 02

In the present case, the value of the
angular velocity o (f,) = d¢ /d¢t; 1s unknown,
and therefore, the equation of motlon 1s
integro-differential. Utlllzing the non-

M\ v (J\F pa?
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the equation of motion is transformed into the following form
t o

4+ = —dny Sﬁ—? S exp [— Bhy? (t — Dl dv (1.2)
k=1

Fig. 2

dimensional varilables

e
dt?
0

This linear equatior will be solved by the methods of operational calcu-
lus. Let § denote the Laplace transform
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0
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Applying the Laplace transform to both sides of (1.2) and by changing the
order of integration analogous to [2], the formula

o0
[0” 1 + © = —4nx [p” OI* D) (@ + Bl
k=1
1s obtained.
Hence, utilizing the known equality [@ ())]*= p® (p) — ¢ (0) and the initilal

conditions 6(0) = g ,= const and ¢’(0) = O , we obtain in accordance with
the inverse transformation

S+ico 0 ® -t
0= g (e B[ (e B )]

Here ¢ 1s a small posltive quantity. This integral contains the char-
acteristic nondimenslional quantities g and ¢ , where p 1s the density
of the fluld. The first one characterizes the relationship of the viscous
forces to the external forces. The second characterizes the relationship
between the moments of inertia of the hardened fluid , and the body oJ .

In order to determine the motion, it 1s necessary to compute the integral
(1.3) which can be done for each specific pair of values of g and ¢ . It
can be easlly seen that the sublntegral expression has a denumerable set of
poles on the negative real axls and two poles at the complex conjugate points
to the left of the imaginary axis.

In the important practical case when the mass of the fluid is a smaller
part of the mass of the whole body, the absolute quantity of the real part
of the complex conjugate roots 1s significantly smaller than the modulus of
the smallest root of the denominator on the real axls. This means that the
corresponding motion has the slowest decay and, therefore, its analysis is
most interesting 1n studying the oscillations of a body containing a liquid.

For o = 1.6 and for the various values of B the real parts of the
complex roots ¢ =—Re P were evaluated as well as the denominator of Equa-
tion (1.3) which 1s equal to the logerithmic decrement of the oscillation
decay. The real and imaginary parts were separately set equal to zeroc 1n
the denominator of (1.3). The results of the computations are shown in
Fig.2 (solid curve). From thils plot it may be generally concluded that the
decay 1s maximum for a certaln finite value of 8 and that it is zero for
g = 0 when the fluld is ideal and does not participate in the motion of the
body, as well as for B = » when the fluld rotates along with the cavity
walls as a rigid body.

2. In the following will be considered the limiting case of a fluld fil-
led body when B 1is large, i.e. when the fluid rotates almost as a rigid
body. Application of double integration by parts in the right-hand side of
(1.2} lead to Equation

oo 00
v . 1 .1 1
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The solution of Equation (2.1) will be sought in the class of functions
bounded along with the first four derivatives. Apparently, the last term in
(2.1) 18 0(p~2) and therefore, it may be neglected when compared with the
foregoing term for sufficlently large B . The valldity of this assumption
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can be demonstrated in the derived, shortened equation (from (2.1)) will
have solutions with bounded four derivatives.

The summations contained in (2.1) are known in the theory of Bessel func-
tions. After the replacements of the summations by thelr numerical values
and dropping of the integral term, the following equation is obtained:

—&g9" + (1 409" +9=0 (ey = '/120B)
Here ¢, i1s a Pmall quantity. Let ¢’= t/¢ be a new independent variable
and e=g, /(1 4 0)"s
The last equation becomes

—ep”" +@" +=20 (2.2)
The general solution of Equatlon (2.2) 1s of the form
¢ = A exp (— Y,et') sin (¢ + B) - Cexp (' / &) (2.3)

According to the condition for boundedness of the solution at infinity
the constant (¢ must be equal to zero. Thus, for large g the body per-
forms decaying oscil%ations with the logarithmic decrement of decay equal
to g=0/24p (1 +0)"

Flg. 2 indicates the dependence of ¢ upon 8 (dotted curve) for ¢ =1.5,
i.e. for the same ¢ as in the preceding section.

Formula (2.3) (for ¢ = 0) can also be obtained directly from (1.3) by
computing the real and imaginary parts of the complex conjugate roots (the
remaining roots tend to — « for g - ). Indeed, the expansion of the sum-
mations contained in (1.3) in powers of p/bxf according to the Newton's
binomial theorem leads to the following two-term representation

0 -1 00
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k=1

The equation for determination of the roots of the denominator in the
first approximatlion is of the form

1—{—p'“’(1+6—10—2%)=0

By means of sequential computation of the zeroth and the first approxima-
tions the above derived formula for ¢ =—Re P 1s easily obtailned from this
equation. Formula (2.3) is likewise obtalned after computation eof the resi-
dues 1n the roots of the subintegral expressions in (1.3). The last method
of solution 1is, unfortunately, not applicable in nonlinear problems.

3. In the following will be considered the motion of a body having a
spherical cavity filled with a viscous fluld the center of which colncides
with the center of inertia of the body and with the point of support. It
will be shown that thls problem can also be solved analogously for a cavity
of any arbitrary form if only the hydrodynamical problem of fluid motion is
known when the body begins rotating with a constant angular velocity, the
solution being linearly dependent upon it. For the case of the spherical
cavity such a solution of the hydrodynamical problem is known for small Rey-
nolds number [2].. In this case; the fluid particles move along parallel
circles. This case will be consldered in the sequel. The formula for the
moment of forces applied by the fluild to the body when 1t begins rotating
with constant angular velocity o 1s [2]

6 < 8,2
_ 1 3 q k
mL—?npma Z exp (— 'v_t.ﬁ_tl)
k=1
where g is the radius of the sphere, 8, are the roots of Equation &= tany.

In the following will be considered only the case with zero external for-
ces (Euler case), the equation of motlon for which is in vector form
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L

dK,_ _ SE&L(tl—T)d'r
dt, dt

Here d/dt, 1s the absolute time derivate, K, and 0, are the momentum
and the instantaneous angular veloclty vectors. If both parts of this equa-
tion are divided by w,?J where w, 1s the initial angular velocity of the
body, J 1s the moment of lnertia about some axis, and 1f the following
nondimensional quantities are introduced

1= 1,0, B = v/ da, T =ua/Jo,
Ay=Ay1J, By=B]J, Co=C/J, K=K /[Jo, Q=0 /a,

then the equation of motion in nondimenslonal variables is of the form

dK 16 m,tg

. X ‘f; S exp (— 88,2 (t — 1) dv @3.1)

0 k=1
Let as in the prevlious case B denote a large parameter and let 1t be
required to find bounded solutions of (3.1) satisfying the given initilal

conditions for (1 . Double integration by parts, similar to the preceding
integration, and the elimination of the higher order integral term leads to

Equation
dK 16 d91§1d291w1
——=——m(——— 1 a1 _) (3.2)
2 2 2 4
dt 3 dt B — 8, de = o
For the solution of the last equation, it 1s convenient to introduce a
body-fixed moving coordinate system with axes along the principal axes of
inertia. The transformation from the absolute derivatives to the derivatives
in the moving coordinate system (which will be denoted by 4’/dt or a prime)
1s given by Formula [4]
dh_2b axn
alt_dt+ x
where h 1s an arbltrary vector.
Equation (3.2) then becomes

d’'K d'Q d’2Q d'Q
o TR xXK=-D "K+“(7§‘+9 XT)
8npa’d 0.028D
(DJ'== 15+ # = B )

Here pJ 18 the moment of inertia of the hardened liquid, « 1s a con-
stant gsmall parameter. In scalar form we have
Ap' + (C —B)y gr =% (p" + qr' — rg’)
By +(A—C)rp=xn(g" + rp’ — pr') (3.3)
Cr' +(B—A)pg=x(r" + p¢ — qp’)
Here A=Ay 4D, B=By--D,C=Cy+D and p, g, r are the projec-
tions of the angular velocity on the moving axes,

In the following will be considered only the case of the axisymmetrical
body when 4 =5 . Also if ¢ >4 and x = 0, 1,e, for a hardened liquid,
the solution of Equation (3.3) is

r=r p = Py cos (0 4 a), g = P, sin (0t + a), o= (C —A)/Ar, (3.4)

Here pq, 'y and a are certain constants. The motion described by For-
mulas (3.43 is the regular precession. In the followl for x small but
finite, the solution will be sought in the form of (3.4) where r,, P, and
w are replaced by r, p and ®w which will be regarded as the slowly vary-
ing functions of time. Indeed, for sufficlently small .x during a short
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segment of time (compared to 2n/b) the motion of the body must be close to
regular precession, i.e, r and p must change a small amount. From Equations
(3.3) in the zero approximation, it follows that

P? = (12 — (C%?) [ A?
where 1% 1s a constant of moments. But since 7 1s independent of time in
view of the conservation of momentum law, this equation is valid for all

instants of time. It yields the relationship between P and r . The equa-

tion for T however, is obtained by substitution of (3.4) into the last
equation in 13.3), and by dropping of terms of order higher than first.

Cr —x(C—AYPr|/A=0

Note that in the deriwation of the last relationship the term w»r” was
neglected which is of second order since the desired solution 1is slowly vary-
ing with time. Evaluatlon of the quadrature leads to the Formula

(12 — C2r2)'fe 1 = E exp [ — % (C — A) 124/ A3C]) (3.5)

where F 1s a constant of integration. Formula (3.5) was derived under the
assumption that ¢ > 4 , i.e, that the body is flattened. For (¢ < 4 , l.e.
for an elongated body, the solution cannot be sought in the form (3.4) since
then & < O which has no physical meaning. Instead, the followlng solution
of Equations (3.3) should be utilized:

r=rg, p = Pysin (ot -+ a), = P, cos (0t + a), ®=(A—C) ryA

Analogous considerations lead again to Formula (3.5). Thus, this formula
glves the asymptotic solution of the formulated problem in all cases. It
shows that for ( = 4, the rotation does not change with time (dynamic sym-
metry), and for ¢ > the body eventually rotates about the z-axis (r-1/C).
For ¢ > A Equation 13.5) shows that r -~ 0 and p - 1/4 and the angular
veloclty of precesslon tends to zero,1l.e. there exists a limiting position
of the axis of revolution which lles in the xy plane.

Also, it is worth noting, that (as can be seen from (3.5)) for sufficlent-
ly small » the derived equation variles slowly with Uime which proves the
valldity of the assumptions made.

The author 1s indebted to N.N. Moiseev for valuable remarks and hils atten-
tion to the problem.
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