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Considered Is the problem of the motion of a rigid body containing a cylln- 
drical (plane motion) or a spherical cavity filled with a viscous fluid. In 
the case of small oscillations of the body with the cylindrical cavity, the 
solution Is obtained by the operational method. For the general case, a 
method Is proposed which Is applicable for a very viscous fluid when the 
lntegro-differential equations of motion are reduced to the ordinary equa- 
tions with a small parameter at the higher derivative. The results are appll- 
cable In the theory of rotation of a body about a fixed point. 

1. The Investigation of particular cases of motion of bodies contalnlng 
cavities with viscous fluids Is presented in [l and 23 and elsewhere, often 
as an example of operational methods. In [3] the oscillations of a body 
were considered under the condition that the Reynolds number Is large, and 
the Investigation of fluid motion utilized an approximation of the boundary 
layer. In the following is considered the problem of body motion containing 
a viscous fluid with such cavities for which the solution of a certain non- 
stationary hydrodynamical problem is known. 

First is considered the simplest case of the plane 
problem. Let there be given a rigid body containing a 
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cavity in the form of a circular cylinder the axis of 
which coincides with the rotation axis of the body 
(Plg.1). The case when the rotation axis does not coln- 

0 clde with the central axis does not essentially compli- 
cate the problem. Let it be required to solve the prob- 
lem of small oscillations for such a body In the presence 
of a restoring moment proportional to the deviation. 

,p 

Fin. 1 

Considered will be only the case of zero initial velocity 
of the fluid. In the general case of an arbitrary lnl- 
tial distribution of velocities, It is necessary only to 
find the superposition of the following solution and :he 
solution of the aroblem of body motion In the absence of 
external forces and an arbitrary Initial distribution of 

fluid velocities In view of the linearity of the considered problem [2]. 

For the following, it Is necessary to bow the solution of a problem of 
viscous fluid motion in a cylinder when the cylinder, initially at rest, is 
instantly brought to a constant angular velocity UJ . This solution will be 
obtained in accordance with [2]. The fluid particle trajectaries may be con- 
sidered circular. 
and Q, 

It then follows that vr = 0 and dv, @ =&where v, 
are the fluid particle velocity cofiponents along the radius and the 
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perpendicular to the radius, 'p Is the central angle. The Navler-Stokes 
equation Is then of the form 

% ( a+, 1 al++ VP 

-=v __ ---- 
at, ar2 + J r ar 9 , 

The solution Is sought for the Initial and boundary conditions 

VV = 0, for t = 0, vV = oa for r = a 

Application of the Laplace transform method leads to the following expres- 
sion for the fluid velocity 

vv (r, t:)= oa 

Here v Is the kinematical coefficient of viscosity, a Is the cylinder 
radius, it are the roots of the Bessel function of the first kind. 

Utilizing the expression for the velocity of deformation In polar coordl- 
nates, It can be established that the force of viscosity for circular motion 
of the fluid Is given by Formula 

where u Is the dynamical coefficient of viscosity. 

The expression for the moment of fluid forces acting on the cylinder walls 
Is obtained from the last two formulas In the following form 

Let J be the body moment of Inertia, HQ the moment of the rotating 
force; then the equation of motion for the body Is 

d"cp 
Jd1,2+M~=lv 

Here N Is the moment due to the fluid 
acting on the body. The expression for It 
Is easily found by means of the Duhamel 
Integral If the solution Is known for the 
corresponding hydrodynamlcal problem (1.1) 

\ 
and the angular velocity I Is given. 

\ Thus, 11 
N = - 

B s 
co’ (t) L (a, rI - z) dz 

0 
0 0.05 ar 0.15 a2 In the present case, the value of the 

Fig. 2 
angular velocity 0 (tJ = dv / dt, Is unknown, 
and therefore, the equation of motion Is 
integro-differential. Utilizing the non- 

dlmenslonal variables 
M "2 

t = t, 
( 1 -7 ’ 

p = + ($j”, 

the equation of motion Is transformed Into the following form 

exp I- Phk2 (t - z)] dt (1.2) 

This linear equatlor will be solved by the methods of operational calcu- 
lus. Let + denote the Laplace transform 
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6, (p) = Fs’p (t) eept dt = [cp (t)]* 
0 

Applying the Laplace transform to both sides of 
order of Integration analogous to [2], the formula 

[cp" (t)l* + @ = -4Wr W WI" 2 (P 

(1.2) and by changing the 

+ P&V 

Is obtained. 
k=l 

Hence, utilizing the known equality [cp'(t)l*= pa @) -q (0) and the initial 
conditions e(n) = 'p,= const and ~'(0) = 0 , we obtain in accordance with 
the inverse transformation 

( m npa4 .Tl 
o=2p=2J=J 

) (1.3) 

Here b Is a small positive quantity. This Integral contains the char- 
acteristic nondimensional quantities ,q and u , where p is the density 
of the fluid. The first one characterizes the relationship of the viscous 
forces to the external forces. The second characterizes the relationship 
between the moments of Inertia of the hardened fluid J, and the body J . 
In order to determine the motion, it is necessary to compute the Integral 
(1.3) which can be done for each specific pair of values of B and c . It 
can be easily seen that the subintegral expression has a denumerable set of 
poles on the negative real axis and two poles at the complex conjugate points 
to the left of the imaginary axis. 

In the important practical case when the mass of the fluid is a smaller 
part of the mass of the whole body, the absolute quantity of the real part 
of the complex conjugate roots is significantly smaller than the modulus of 
the smallest root of the denominatoronthe real axis. This means that the 
corresponding motion has the slowest decay and, therefore, Its analysis is 
most Interesting In studying the oscillations of a body containing allquld. 

For o = 1.6 and for the various values of B the real parts of the 
complex roots p =-Re p were evaluated as well as the denominator of Equa- 
tion (1.3) which is equal to the logerlthmic decrement of the oscillation 
decay. The real and Imaginary parts were separately set equal to zero In 
the denominator of (1.3). 
Fig.2 (solid curve). 

The results of the computations are shown In 
From this plot it may be generally concluded that the 

decay Is maximum for a certain finite value of 6 and that it is zero for 
B = 0 when the fluid Is ideal and does not participate In the motion of the 
body, as well as for B = m when the fluid rotates along with the cavity 
walls as a rigid body. 

2. In the following will be considered the llmltlng case of a fluid fll- 
led body when B is large, I.e. when the fluid rotates almost as a rigid 
body. Application of double Integration by parts In the right-hand side of 
(1.2) lead to Equation 

eXp I- &' (t - Z)] dr 

The solution of Equation (2.1) will be sought In the class of functions 
bounded along with the first four derivatives. 
(2.1) is 0(e-") and therefore, 

Apparently, the last term in 
it may be neglected when compared with the 

foregoing term for sufficiently large B , The validity of this assumption 
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can be demonstrated In the derived, shortened equation (from (2.1)) will 
have solutions with bounded four derivatives. 

The summations contained In (2.1) are known In the theory of Bessel func- 
tions . After the replacements of the summations by their numerical values 
and dropping of the Integral term, the following equation is obtained: 

- e,cp”’ + (1 + a) cpO + ‘p = 0 (El = ‘/drP) 

Here c, Is a small quantity. Let t’= t/c be a new Independent variable 
and e= e1 / (1 + a)*‘~. 

The last equation becomes 

- ecp” + ‘pU + cp = 0 
The general solution of Equation (2.2) Is of the form 

(2.2) 

cp = A exp (- l/set’) sin (t’ + B) + C exp (t’ / e) (2.3) 

According to the condition for boundedness of the solution at Infinity 
the constant C must be equal to zero. Thus, for large E the body per- 
forms decaying osclllatJons with the logarlthmlc decrement of decay equal 
to q=a/24p (1 +a)“‘*. 

Fig. 2 Indicates the dependence of I upon B (dotted curve) for c =1.6, 
I.e. for the same a as In the preceding section. 

Formula (2.3) (for C = 0) can also be obtained directly from (1.3) by 
computing the real and Imaginary parts of the complex conjugate roots (the 
remaining roots tend to - m - m). Indeed, the expansion of the sum- 
mations contained In (1.3) in izfer! of p/PA a according to the Newton’s 
binomial theorem leads to the following two-&m representation 

jl (+ + ak2 j’ = k=l hk2 
5 ‘-$--&+...=$-f&+... K 

The equation for determination of the roots of the denominator in the 
first approximation Is of the form 

l+p” 1+u-&f =o ( ) 
By means of sequential computation of the zeroth and the first approxlma- 

tlons the above derived formula for 4 = --Re P is easily obtained from this 
equation. Formula (2.3) is likewise obtained after computation of the resi- 
dues In the roots of the subintegral expressions In (1.3). The last method 
of solution is, unfortunately, not applicable In nonlinear problems. 

3. In the following will be considered the motion of a body having a 
spherical cavity filled with a viscous fluid the center of which coincides 
with the center of Inertia of the body and with the point of support. It 
will be shown that this problem can also be solved analogously for a cavity 
of any arbitrary form If only the hydrodynamical problem of fluid motion Is 
known when the body begins rotating with a constant angular velocity, the 
solution being linearly dependent upon It. For the case of the spherical 
cavity such a solution of the hydrodynamical problem Is known for small Eey- 
nolds number [ 23 . . In this case, the fluid particles move along parallel 
circles. This case will be considered In the sequel. The formula for the 
moment of forces applied by the fluid to the body when It begins rotating 
with constant angular velocity UI 1s c21 

where c Is the radius of the sphere, br are the roots of Equation b = tan b. 

In the following will be considered only the case with zero external for- 
ces (Euler case), the equation of motion for which Is In vector form 



lk.tlon of . rigid body conthdns cWitles filled with . fluid 1357 

h 

dKl- _ dP,L(t,-T)& 
dt, - s 

0 dz 
and 

Here d/at, Is the absolur;e time derlvate, K, and n, are the momentum 
the Instantaneous angular velocity vectors. 

tion are divided by UI ‘J where UJ,, 
If both parts of this equa- 

Is the initial angular velocity of 
body, J Is the momen? of Inertia about some axis, and If the following 

the 

nondimensional quantities are Introduced 

i! = t,o,, p = V I a200, ~=~a3/Jo, 

A, = A, / J, B,=B,lJ, 

then the equation of motion in 

‘2, = C, / J, K = K,/Jo,, B = 61, I 00 

nondimensional variables Is of the form 

dK -= 
dt 

- +cy $ s 5 exp (- @Sk2(t - z)) dz 

k=l 

Let as ln the previous case B denote 9 large parameter and let It be 
required to find bounded solutions of (3.1) satisfying the given Initial 
conditions for n . Double Integration by parts, similar to the preceding 
Integration, and the elimination of the higher order Integral term leads to 
Equation 

dK = 
dt 

(3.2) 

For the solution of the last equation, it Is convenient to Introduce a 
body-fixed moving coordinate system with axes along the principal axes of 
Inertia. The transformation from the absolute derivatives to the derivatives 
ln the moving coordinate system (which will be denoted by d’/dt or a prime) 
Is given by Formula [4] 

dh d’h 
-= 
dt XfQXh 

where h Is an arbitrary vector. 

Equation (3.2) then becomes 

Here DJ Is the moment of Inertia of the hardened liquid, x Is a con- 
stant small parameter. In scalar form we have 

Ap’ + (C - B) qr = x (p” + qr’ - rq’) 

Bq’ + (A - C) rp = x (q” + rp’ - pr’) 

Cr’ f (B -A) pq = x (r” + pq’ - qp’) 

Here A=AofD, B=BofDt C=Co-l-D and p, q, r 
tlons of the angular velocity on the movlhg axes. 

In the following will be considered only the case of the 
body when A = B . Also If C > A and x = 0 , I.e. for a 
the solution of Equation (3.3) is 

(3.3) 

are the projec- 

axlsymmetrlcal 
hardened liquid, 

r = r,, p = PO cos (ot + a), q = P, sin (at + a), CO = (C-A) /Ar, (3.4) 

Here p r. and a are certain constants. 
mulas (3.49'1s the regular precession. 

The motion described by For- 
In the follow1 

finite, the solution will be sought In the form of (3.4 %ke' 7 
small but 

rO, PO and 
W are replaced by F, p and w which will be regaraed as the slowly vary- 
ing functions of time. Indeed, for sufficiently small x during a short 
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segment of time (compared to ~/IN) the motion of the body must be close to 
regular precesslon,l.e. F and p must change a small amount. From Equations 
(3.3) In the zero approximation, It follows that 

P2 = (12 - C2r2) / Aa 

where l2 Is a constant of moments. But since la 1s independent of time in 
view of the conservation of momentum law, this equation Is valid for all 
Instants of time. It yields the relationship between p and F . The equa- 
tion for r however, Is obtained by substitution of (3.4) Into the last 
equation In t 3.3), and by dropping of terms of order higher than first. 

Cr’-x(C-A)P%/A=O 

Note that In the derlwation of the last relationship the term ~rl was 
neglected which Is of second order since the desired solution is slowly vary- 
ing with time. Evaluation of the quadrature leads to the Formula 

(12 - Czrc)'/* ?-l = E e xp [ -x (C -A) Pt/AG] (3.5) 

where E Is a constant of Integration. Formula (3.5) was derived under the 
assumption that C > A I.e. that the body Is flattened. For C < A I.e. 
for an elongated body, ihe solution cannot be sought In the form (3.4)'slnce 
then ,JJ < 0 which has no physical meaning. 
of Equations (3.3) should be utilized: 

Instead, the following solution 

r = ro, p = PO sin (ot + a), 4 = PO cos (at -t_ a), 0 = (A - C) ro/A 

Analogous considerations lead again to Formula (3.5). Thus, this forrnnla 
gives the asymptotic solution of the formulated problem In all cases. 
shows that for C = A. the rotation does not change with time (dynamic sym- 
metry), and for C >--' the body eventually rotates about the z-axls(F-L/C). 
For C > A Equation 4 3.5) shows that F + 0 and p - l/A and the angular 
velocity of precession tends to zer0,l.e. there exists a Ilmltlng position 
of the axis of revolution which lies In the xy plane. 

Also, It Is worth noting, that (as can be seen from (3.5)) for sufflclent- 
ly small x the derlved equation varies slowly with time which proves the 
validity of the assumptions made. 

The author Is Indebted 
tlon to the problem. 

to N.N. Molseev for valuable remarks and his atten- 
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